Sem.	Department Level Optional Course (DLOC)	Institute Level Optional Course (ILOC)
V	CSDLO5011: Multimedia System CSDLO5012: Advance Operating System CSDLO5013: Advance Algorithm	
VI	CSDLO6021: Machine Learning CSDLO6022: Advance Database System CSDLO6023: Enterprise Resource Planning CSDLO6024: Advance Computer Network	
VII	CSDLO7031: Advance System Security & Digital Forensics CSDLO7032: Big Data & Analytics CSDLO7033: Robotics	ILO7011. Product Lifecycle Management ILO7012. Reliability Engineering ILO7013. Management Information System ILO7014. Design of Experiments ILO7015. Operation Research ILO7016. Cyber Security and Laws ILO7017. Disaster Management & Mitigation Measures ILO7018. Energy Audit and Management ILO7019. Development Engineering
VIII	DLO8011: High Performance Computing DLO8012: Natural Language Processing DLO8013: Adhoc Wireless Network	ILO8021. Project Management ILO8022. Finance Management ILO8023. Entrepreneurship Development and Management ILO8024. Human Resource Management ILO8025. Professional Ethics and CSR ILO8026. Research Methodology ILO8027. IPR and Patenting ILO8028. Digital Business Management ILO8029. Environmental Management

Course Code	Course Name	Credits
ILO 7011	Product Life Cycle Management	03

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Sr. No.	Detailed Contents	Hrs
01	Introduction to Product Lifecycle Management (PLM): Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	10
02	Product Design: Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	09
03	Product Data Management (PDM): Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	05
04	Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	05
05	Integration of Environmental Aspects in Product Design: Sustainable Development,	05

	Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life		
	Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies		
	into the Design Process, Life Cycle Environmental Strategies and Considerations for		
	Product Design		
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of	05	
	Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and		
06	Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach,		
	General Framework for LCCA, Evolution of Models for Product Life Cycle Cost		
	Analysis		

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Course Code	Course Name	Credits
ILO 7012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

- 1. Understand and apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Sr. No	Detailed Contents	Hrs
01	Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem. Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance. Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard	08
02	Deviation, Variance, Skewness and Kurtosis. Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve. Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions. Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time	08
03	Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis. System Reliability: System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
04	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis. System Reliability Analysis – Enumeration method, Cut-set method, Success Path method, Decomposition method.	08
05	Maintainability and Availability: System downtime, Design for Maintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts standardization and Interchangeability, Modularization and Accessibility, Repair Vs Replacement. Availability – qualitative aspects.	05
06	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fau1t tree analysis and Event tree Analysis	05

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Course Code	Course Name	Credits
ILO 7013	Management Information System	03

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Sr. No.	Detailed Contents	Hrs
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS	4
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	7
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	6
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	8

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
ILO 7014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Sr. No	Detailed Contents	Hrs
	Introduction	
	1.1 Strategy of Experimentation	
01	1.2 Typical Applications of Experimental Design	06
	1.3 Guidelines for Designing Experiments	
	1.4 Response Surface Methodology	
	Fitting Regression Models	
	2.1 Linear Regression Models	
	2.2 Estimation of the Parameters in Linear Regression Models	
02	2.3 Hypothesis Testing in Multiple Regression	08
02	2.4 Confidence Intervals in Multiple Regression	
	2.5 Prediction of new response observation	
	2.6 Regression model diagnostics	
	2.7 Testing for lack of fit	
	Two-Level Factorial Designs	
	$3.1 \text{ The } 2^2 \text{ Design}$	
	3.2 The 2 ³ Design	
03	3.3 The General2 ^k Design	07
03	3.4 A Single Replicate of the 2 ^k Design	
	3.5 The Addition of Center Points to the 2 ^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs	
	4.1 The One-Half Fraction of the 2 ^k Design	
04	4.2 The One-Quarter Fraction of the 2 ^k Design	07
	4.3 The General 2 ^{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
05	Response Surface Methods and Designs	07
	5.1 Introduction to Response Surface Methodology	

	5.2 The Method of Steepest Ascent	
	5.3 Analysis of a Second-Order Response Surface	
	5.4 Experimental Designs for Fitting Response Surfaces	
	Taguchi Approach	
06	6.1 Crossed Array Designs and Signal-to-Noise Ratios	04
00	6.2 Analysis Methods	
	6.3 Robust design examples	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss

Course Code	Course Name	Credits
ILO 7015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Sr. No.	Detailed Contents	Hrs
	Introduction to Operations Research: Introduction, , Structure of the Mathematical	
	Model, Limitations of Operations Research	
	Linear Programming : Introduction, Linear Programming Problem, Requirements of	
	LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty	
	Cost Method or Big M-method, Two Phase Method, Revised simplex method,	
	Duality , Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality	
	Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex	
	Method, Sensitivity Analysis	
01	Transportation Problem : Formulation, solution, unbalanced Transportation problem.	14
V1	Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's	14
	approximation method. Optimality test: the stepping stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the Problem,	
	Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m	
	Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem,	
	Travelling Salesman Problem	
	Integer Programming Problem: Introduction, Types of Integer Programming	
	Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique.	
	Introduction to Decomposition algorithms.	
	Queuing models: queuing systems and structures, single server and multi-server	
02	models, Poisson input, exponential service, constant rate service, finite and infinite	05
	population	
	Simulation: Introduction, Methodology of Simulation, Basic Concepts, Simulation	
03	Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo	05
00	Simulation, Applications of Simulation, Advantages of Simulation, Limitations of	
	Simulation	

	Dynamic programming. Characteristics of dynamic programming. Dynamic	
04	programming approach for Priority Management employment smoothening, capital	05
	budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	
	Game Theory. Competitive games, rectangular game, saddle point, minimax	
05	(maximin) method of optimal strategies, value of the game. Solution of games with	05
05	saddle points, dominance principle. Rectangular games without saddle point – mixed	03
	strategy for 2 X 2 games.	
06	Inventory Models: Classical EOQ Models, EOQ Model with Price Breaks, EOQ with	05
06	Shortage, Probabilistic EOQ Model,	03

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons

Course Code	Course Name	Credits
ILO 7016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Sr. No.	Detailed Contents	Hrs
01	Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
02	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	9
03	Tools and Methods Used in Cyberline Phishing, Password Cracking, Key loggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
04	The Concept of Cyberspace E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law , The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law	8
05	Indian IT Act. Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	6
06	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on: The Information Technology ACT, 2008- TIFR: https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Course Code	Course Name	Credits
ILO 7017	Disaster Management and Mitigation Measures	03

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Sr. No.	Detailed Contents	Hrs
01	Introduction 1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.	03
02	 Natural Disaster and Manmade disasters: 2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion 2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters. 	09
03	 Disaster Management, Policy and Administration 3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. 3.2 Policy and administration: Importance and principles of disaster management policies, command and coordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process. 	06
04	Institutional Framework for Disaster Management in India: 4.1 Importance of public awareness, Preparation and execution of emergency management program. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. 4.2 Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
05	Financing Relief Measures:	09

	5.1 Ways to raise finance for relief expenditure, role of government agencies and	
	NGO's in this process, Legal aspects related to finance raising as well as overall	
	management of disasters. Various NGO's and the works they have carried out in	
	the past on the occurrence of various disasters, Ways to approach these teams.	
	5.2 International relief aid agencies and their role in extreme events.	
	Preventive and Mitigation Measures:	
	6.1 Pre-disaster, during disaster and post-disaster measures in some events in general	
	6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and	
06	embankments, Bio shield, shelters, early warning and communication	06
06	6.3 Non Structural Mitigation: Community based disaster preparedness, risk transfer	00
	and risk financing, capacity development and training, awareness and education,	
	contingency plans.	
	6.4 Do's and don'ts in case of disasters and effective implementation of relief aids.	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

REFERENCES:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elsevier Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards' and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
ILO 7018	Energy Audit and Management	03

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Sr. No	Detailed Contents	Hrs
01	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
02	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
03	Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	10
04	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity,	10

	factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	
05	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
06	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

ILO7019	Development Engineering	03
Course Code	Course Name	Credits

- 1. To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural Development.
- 2. To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
- 3. An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the context of work life and the personal life of modern Indian professionals
- 4. To understand the Nature and Type of Human Values relevant to Planning Institutions

- 1. Apply knowledge for Rural Development.
- 2. Apply knowledge for Management Issues.
- 3. Apply knowledge for Initiatives and Strategies
- 4. Develop acumen for higher education and research.
- 5. Master the art of working in group of different nature.
- 6. Develop confidence to take up rural project activities independently

Sr. No.	Module Contents	Hrs
01	Introduction to Rural Development Meaning, nature and scope of development;	08
	Nature of rural society in India; Hierarchy of settlements; Social, economic and	
	ecological constraints for rural development Roots of Rural Development in	
	India Rural reconstruction and Sarvodaya programme before independence;	
	Impact of voluntary effort and Sarvodaya Movement on rural development;	
	Constitutional direction, directive principles; Panchayati Raj - beginning of	
	planning and community development; National extension services.	
02	Post-Independence rural Development Balwant Rai Mehta Committee - three	04
	tier system of rural local Government; Need and scope for people's	
	participation and Panchayati Raj; Ashok Mehta Committee - linkage between	
	Panchayati Raj, participation and rural development	
03	Rural Development Initiatives in Five Year Plans Five Year Plans and Rural	06
	Development; Planning process at National, State, Regional and District levels;	
	Planning, development, implementing and monitoring organizations and	
	agencies; Urban and rural interface - integrated approach and local plans;	
	Development initiatives and their convergence; Special component plan and	
	sub-plan for the weaker section; Micro-eco zones; Data base for local planning;	
	Need for decentralized planning; Sustainable rural development.	
04	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including -	04
	XI schedule, devolution of powers, functions and finance; Panchayati Raj	
	institutions - organizational linkages; Recent changes in rural local planning;	
	Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource	
	mapping, resource mobilization including social mobilization; Information	
	Technology and rural planning; Need for further amendments.	
05	Values and Science and Technology Material development and its values; the	10
	challenge of science and technology; Values in planning profession, research	
	and education.	

	Types of Values Psychological values — integrated personality; mental health;	
	Societal values — the modern search for a good society; justice, democracy,	
	rule of law, values in the Indian constitution;	
	Aesthetic values — perception and enjoyment of beauty; Moral and ethical	
	values; nature of moral judgment; Spiritual values; different concepts; secular	
	spirituality; Relative and absolute values;	
	Human values— humanism and human values; human rights; human values as	
	freedom, creativity, love and wisdom.	
06	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility;	04
	Work ethics;	
	Professional ethics; Ethics in planning profession, research and education	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately

40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References:

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V. , Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No.4, pp.395 407